17. Tagung - Der Arbeitsprozess des Verbrennungsmotors
Architecture and independence controller for deep learning in safety critical applications
Autoren
Dr. Ulrich Bodenhausen, Ulrich Bodenhausen AI Coaching and Vector Consulting Services GmbH
Jahr
2019
Zusammenfassung
The market potential of safety critical products using AI is very attractive and Deep Learning Neural Networks (NN) have proven strengths to provide important functionality. This paper describes some of the challenges in arguing safety of systems using Deep Learning NN, especially functional improvement in context of SOTIF (Safety of the Intended Functionality) or other approaches to provide the safety case. An architecture and independence controller is proposed which can be used beneficially to reduce residual risk of functional insufficiencies for Deep Learning NN based systems.
Mitglieder des Österreichischen Vereins für Kraftfahrzeugtechnik haben Zugriff auf alle Vorträge der Internationalen Wiener Motorensymposien.